void initLights(void)

Set all of port T to be an input

Enable Timer 0

Set Timer 0 to a 3MHz clock rate

Enable Timer 1

Set Timer 1 to a 3MHz clock rate

Turn the timer system on for Timer 2

Set pre-scale to /128 or 187.5 kHz clock

Set up TIM0_IC4 as an IC

Enable TIM0_TC4 as an interrupt

Set TIM_0 IC4 to capture any edge

Clear TIM_0 IC4 flag

Set up TIM0_IC5 as an IC

Enable TIM0_TC5 as an interrupt

Set TIM_0 IC5 to capture any edge

Clear TIM_0 IC5 flag

Set up TIM0_IC6 as an IC

Enable TIM0_TC6 as an interrupt

Set TIM_0 IC6 to capture any edge

Clear TIM_0 IC6 flag

Set up TIM0_IC7 as an IC

Enable TIM0_TC7 as an interrupt

Set TIM_0 IC7 to capture any edge

Clear TIM_0 IC7 flag

Set up TIM1_IC4 as an IC

Enable TIM1_TC4 as an interrupt

Set TIM_1 IC4 to capture any edge

Clear TIM_1 IC4 flag

Set up TIM1_IC5 as an IC

Enable TIM1_TC5 as an interrupt

Set TIM_1 IC5 to capture any edge

Clear TIM_1 IC5 flag

Set up TIM1_IC6 as an IC

Enable TIM1_TC6 as an interrupt

Set TIM_1 IC6 to capture any edge

Clear TIM_1 IC6 flag

Set up TIM1_IC7 as an IC

Enable TIM1_TC7 as an interrupt

Set TIM_1 IC7 to capture any edge

Clear TIM_1 IC7 flag

set pre-scale to /128 or 187.5 kHz clock

Set up TIM2_OC7 as an OC

Enable TIM2_TC7 as an interrupt

Set TIM2_TC7 to output capture

There is no pin connected to TIM2_OC7

Set first compare for TIM2_OC7

Clear flag for TIM2_OC7

Set every value in the dutyCycle array to 0

end initLights

void GetDutyCycle(void)

return the current duty cycle

end GetDutyCycle

Note: There are 8 input capture interrupts, each the same as below.

void interrupt _Vec_tim0ch4 ICInterrupt0-7(void)

Record the current time

If we are on a rising edge

Set lastTime to currTime

Set the lastTimeFlag to 0

end if

If we are on a falling edge

If an overcount occured

Set sawDutyCycle to 100-(((currTime<<1) - (lastTime+currTime))/(PERIOD/100))

Add sawDutyCycle to integrateAvg

end if

else we have a non overcount situation

Set sawDutyCycle to 100-((currTime-lastTime)/(PERIOD/100));

Add sawDutyCycle to integrateAvg

end else

Increment the amount of times we saw a full duty cycle

end if

if we have counted integrateTimes to 200

Average the duty cycle, and set it to dutyCycle

Reset integrate average

end if

Reset the interrupt flag

end interrupt

void interrupt _Vec_tim2ch7 OutputCompareInterrupt(void)

Iterate through lastTime flag and increment its value

If lastTimeFlag is at its maximum

We must have a zero percent duty cycle

end if

Clear the flag

 Set the next output compare

end interrupt

/*Test Harness*/

void main()

Initialize the module

Enable Interrupts

Iterate through the duty cycle array and print its value

end main
