
ME218C 2022 Communications
Protocol
Version 2.1.8, May 18th, 2022

Communications Committee Members:
Joaquin Castillo
Carissa Cirelli
Josh DeWitt
Nicholas Riley
Andrew Sack
Melody Yang

a.k.a. AJ and the Anonymous Animals

Revision Log

Revision Log

Date Section/Description Authors

5/3/22 Initial Draft Joaquin, Carissa, Josh, Nick,
Andrew, Melody

5/9/22 Added clarifications around
fuel level

Andrew

5/9/22 Changed Yaw byte to
relative, clarified symmetric
input, control mixing

Josh

5/9/22 Updated pairing state
diagrams to include valid
control/status received events

Joaquin

5/10/22 Made CW positive in
accordance with axis image

Andrew

5/13/22 Draft of example “Entire
Packets”

Josh

5/14/22 Changed API Identifier for
Transmission FROM XBee to
0x81

Andrew

5/17/22 Switched COMM_TIMEOUT
from 5s to 3s
Elaborated on meaning of
COMM_TIMEOUT

Joaquin, Carissa, Josh, Nick,
Andrew, Melody

5/18/22 Updated Team 1 XBee
addresses

Joaquin

Revision Log 2

Introduction 5

Overview of XBee Communication 5
XBee Data Frame Structure 5
XBee API Commands Used 5
Team XBee Addresses 8

Summary of Commands 8
List of Message IDs for Commands 8

Pairing Protocol 8
Pairing State Diagrams 10
Pairing Packet Flow 11
Pairing Frame Data 11

PILOT -> TUG Request to Pair 11
TUG -> PILOT Pairing Acknowledgement 11

Control Protocol 12
Control Frame Data 12

PILOT -> TUG: Control Frame Data 12
Definition of Axes 12
Control Mixing 12
Symmetric Control Values 13
Conversion between Signed and Unsigned Integers 13
Control.X (Fore and Aft system, forward to backward) 13
Control.Y (Port to Starboard, left to right) 13
Control.Yaw 13
Control.Refuel 13
Control.Mode3 13

Status Protocol 14
Status Frame Data 14

TUG -> PILOT: Status Frame Data 14
Status.FuelLevel 14

Refueling Procedure 14
TUG 14
PILOT 14

Acknowledgements 15

Appendix 16
Sample Messages 16

Entire Message Frame - Transmission TO XBee 17
Entire Message Frame - Transmission FROM XBee 18

Introduction
A long time ago in a galaxy far, far away… Six intrepid teams gathered to do battle on the
hallowed grounds of Terman Fountain. One guild will emerge victorious, but our destinies are
still unknown…

Update 5/25/22: One guild is better than the other.

Overview of XBee Communication

XBee Data Frame Structure
Transmit (PIC to XBee)

Descri
ption

Start
Delimiter

Length API
Identifier

Frame
ID

Destination
Address

Options RF
Data

Check
sum

Byte # 1 2 3 4 5 6-7 8 9-N n+1

Value 0x7E MSB LSB US

Receive (XBee to PIC)

Descri
ption

Start
Delimiter

Length API
Identifier

Destination
Address

RSSI Options RF
Data

Check
sum

Byte # 1 2 3 4 5-6 7 8 9-N n+1

Value 0x7E MSB LSB US

XBee API Commands Used

-

Team XBee Addresses

Team TUG XBee address PILOT XBee address

0 0x2187 0x218A

1 0x2086 0x2084

2 0x2184 0x2186

3 0x2188 0x2183

4 0x2085 0x2082

5 0x2185 0x2087

Summary of Commands
● Pairing
● Control - Thrust information along with Option Byte and refuel sent at 5 Hz
● Status (fuel) - The boat must respond to all control messages with the fuel level

List of Message IDs for Commands

Header Command

0x01 Control (PILOT->TUG)

0x02 Status (TUG->PILOT)

0x03 Request to Pair (PILOT->TUG)

0x04 Pairing Acknowledged (TUG->PILOT)

Pairing Protocol
Both the TUG and PILOT have a pairing functionality. When the device is in the PAIRED state,
the device will not transmit any pairing commands and will ignore any pairing commands they
receive as well as any commands from a device other than the one it is paired to. When the
device is in ATTEMPTING TO PAIR state, it will ignore any non-pairing commands it receives.
The TUG/PILOT shall enter ATTEMPTING TO PAIR mode when:

1. Powered On
2. The PAIRING BUTTON is pressed

3. No message is received for COMM_TIMEOUT (COMM_TIMEOUT = 3s)

When the PILOT enters ATTEMPTING TO PAIR mode it will transmit a REQUEST TO PAIR
message to the TUG address specified by the CONCON upon entering ATTEMPTING TO PAIR
mode. It will repeat this transmission at 5 Hz until a PAIRING ACKNOWLEDGED message is
received from the specified TUG.

The TUG address selector should only be read when the PAIRING BUTTON is pressed or the
PILOT is powered on. On COMM TIMEOUT, the address selector should not be read, and the
last latched address should be used. This should attempt to reconnect the PILOT with the
same TUG in case of a communications error during a round.

When the TUG enters WAITING FOR PAIR REQUEST mode it will wait until it receives a
REQUEST TO PAIR message from a PILOT. It will store the PILOT’s address and reply with a
PAIRING ACKNOWLEDGED message. It will repeat this transmission at 5 Hz until a CONTROL
message is received from the specified CONCON. When the TUG enters ATTEMPTING TO
PAIR it shall also reset the Fuel Level to full (255).

COMM_TIMEOUT kicks both PILOT and TUG back to the initial pairing stage (ATTEMPTING
TO PAIR and WAITING FOR PAIR REQUEST, respectively) when they have not received a
valid message for that period of time. In the absence of a change in address selector, this
should repair the same PILOT - TUG combination and allow the game to continue.

Pairing State Diagrams

Pairing Packet Flow

Pairing Frame Data

PILOT -> TUG Request to Pair

Byte # 0 1 2 3 4 5

Meaning Message
ID

TUG Addr
MSB

TUG Addr
LSB

PILOT
Addr MSB

PILOT
Addr LSB

ACK

Value 0x03 uint8_t uint8_t uint8_t uint8_t 0xAA

TUG -> PILOT Pairing Acknowledgement

Byte # 0 1 2 3 4 5

Meaning Message
ID

TUG Addr
MSB

TUG Addr
LSB

PILOT
Addr MSB

PILOT
Addr LSB

ACK

Value 0x04 uint8_t uint8_t uint8_t uint8_t 0x55

Control Protocol

Control Frame Data

PILOT -> TUG: Control Frame Data

Byte # 0 1 2 3 4 5

Meaning Message
ID

X Y Yaw Refuel Mode3

Value 0x01 int8_t int8_t int8_t uint8_t uint8_t

Definition of Axes

https://docs.px4.io/v1.12/en/config/flight_controller_orientation.html

Control Mixing
The 2 dimensional control scheme is a modified Arcade drive. The X and Yaw values can map
to a standard tank drive, per the standard Arcade method, while the Y value adds a translational
component. See the following sections for the detailed implementation of each byte.

The exact mixing of each drive component is left to the team to decide, but should conform to
the existing fuel consumption guidelines, and not involve any data not explicitly declared inside
the X, Y, and Yaw control data.

While each byte must provide the functions defined below, each team is allowed to invert or mix
their signals however they like on the PILOT side, i.e. moving a Yaw joystick to the right creates
a CCW rotation.

https://docs.px4.io/v1.12/en/config/flight_controller_orientation.html

See the link below for a brief overview of Arcade style driving, as well as an interactive demo at
the bottom (most helpful):
https://xiaoxiae.github.io/Robotics-Simplified-Website/drivetrain-control/arcade-drive/

Symmetric Control Values
To make all motion mostly symmetric, while the full range of a signed 8 bit integer is -128 to
+127, each control integer value should only range from -127 to +127. In the case of a -128
being read by the controller, a value equivalent to -127 should be assigned and acted up.

Conversion between Signed and Unsigned Integers
Because the XBee protocol relies on UART, data must be converted into unsigned 8 bit
numbers (“uint8_t”). A recommended way to do this is to calculate the control value as an
int8_t, cast the value as a uint8_t when inserting into the TX buffer on the PILOT side, and then
cast as an int8_t when reading from the RX buffer into the TUG control register

Control.X (Fore and Aft system, forward to backward)
This byte controls the forward/backward motion of the TUG. 0 is no motion, +127 is full throttle
forward, and -127 is full throttle backward.

Control.Y (Port to Starboard, left to right)
This byte controls the left to right, or Port and Starboard motion of the TUG. Per the axes
above, positive Y is to the Right (Starboard). 0 is no side to side motion, +127 is full throttle to
starboard, and -127 is full throttle to port.

Control.Yaw
This byte controls the rate of rotation of the TUG about the Z axis. Per the axes above, -127 is
max angular speed CounterClockWise turn, +127 is max angular speed ClockWise turn.

Control.Refuel
The refuel byte indicates when refueling is completed. 0 means no refuel action has occurred,
and 1 means refueling has occurred. The TUG should only respond to the refueling action when
its fuel level is 0. The PILOT should continue sending 1 until it receives full fuel from the TUG,
upon which it should set the refuel byte to 0 again. The PILOT may not reset the refuel byte
back to 1 until it receives 0 fuel from the TUG.

Control.Mode3
This is an “auxiliary” byte, to be used to actuate “fun” and aesthetic devices on the TUG. The
ability to send or read to this byte is not required for any TUG or PILOT, and if not implemented,
should be ignored/send all zeros.

https://xiaoxiae.github.io/Robotics-Simplified-Website/drivetrain-control/arcade-drive/

Each bit represents one togglable “action”, so that up to 8 different actions can be triggered. If
multiple actions are implemented, their associated bits should start at the Least Significant Bit
and move up to MSB for action 8.

Status Protocol

Status Frame Data

TUG -> PILOT: Status Frame Data

Byte # 0 1 2 3 4 5

Meaning Message
ID

Fuel Level UNUSED UNUSED UNUSED UNUSED

Value 0x02 uint8_t 0x00 0x00 0x00 0x00

Status.FuelLevel
The fuel level byte indicates fuel level. 255 is full and 0 means you need to refuel! It should
decrease by 0.255 per % thrust per second, rounded to the nearest integer for transmission.

Integration should be calculated at a rate of at least 5 Hz, and controlled by a timer that is
independent of Control/Status packets. The value of remaining fuel should be tracked by at
least a single precision floating point value. At each integration step, the total output of the
motors should be summed, multiplied by a timestep, and then subtracted from the remaining
fuel level.

Refueling Procedure

TUG
TUG’s Fuel Level:
0:
If the TUG is at 0 fuel, it shall ignore all motor controls and disable all TUG actuators. It shall
remain in this state until it receives 1 for the Control Message Refuel bit. When it receives a 1,
the TUG’s fuel level shall be set to 255.
non-0:
The TUG shall ignore all Refuel bit values.

PILOT
If the PILOT receives a fuel level that is not 0 from the TUG, it shall set the GASCON’s refuel
flag to 0.

Acknowledgements
The ME218C 2022 communications committee would like to ACK the valuable support of
Professor Ed Carryer and Karl Gumerlock in the creation of this standards document.

Appendix

Sample Messages
Color Legend:

XBee Protocol API Protocol ME218C 2022 Protocol

For the following examples, the PILOT has an address of 0x2142 and the TUG has an address
of 0x2169. The messages TO the XBee are sent, and the same messages are received in the
FROM table.

The Pairing message is a sample pairing acknowledgement, sent from TUG to PILOT.
The Control message is a control frame sent from PILOT to TUG.
The Status message is sent from TUG to PILOT.

An important difference between the sent and received message is the location of the
Source/Destination address

These message frames are provided as reference, please review the sections above for
implementation details.

Entire Message Frame - Transmission TO XBee

Byte
Index

Pairing Control Status Sample Pairing
ACK Frame

Sample
Control Frame

Sample
Status Frame

1 Start Delimiter 0x7E 0x7E 0x7E

2 Length MSB 0x00 0x00 0x00

3 Length LSB 0x0B 0x0B 0x0B

4 API Identifier 0x01 0x01 0x01

5 Frame ID 0x01 0x01 0x01

6 Destination Address MSB 0x21 0x21 0x21

7 Destination Address LSB 0x42 0x69 0x42

8 Options 0x00 0x00 0x00

9 Message ID 0x04 0x01 0x02

10 TUG Addr
MSB

X Fuel
Level

0x21 +127 = 0x7F 136 = 0x88

11 TUG Addr
LSB

Y - 0x69 0 = 0x00 0x00

12 PILOT
Addr MSB

Yaw - 0x21 -64 = 0xC0 0x00

13 PILOT
Addr LSB

Refuel - 0x42 0x00 0x00

14 ACK Mode 3 - 0x55 0x01 0x00

15 Checksum (0xFF-0xAB)
= 0x54

(0xFF-0xCD)
= 0x32

(0xFF-0xED)
= 0x22

Entire Message Frame - Transmission FROM XBee

Byte
Index

Pairing Control Status Sample Pairing
ACK Frame

Sample
Control Frame

Sample
Status Frame

1 Start Delimiter 0x7E 0x7E 0x7E

2 Length MSB 0x00 0x00 0x00

3 Length LSB 0x0B 0x0B 0x0B

4 API Identifier 0x81 0x81 0x81

5 Source Address MSB 0x21 0x21 0x21

6 Source Address LSB 0x69 0x42 0x69

7 RSSI 0xA4 = -164dB 0x10 = -16dB 0x45 = -69dB

8 Options 0x00 0x00 0x00

9 Message ID 0x04 0x01 0x02

10 TUG Addr
MSB

X Fuel
Level

0x21 +127 = 0x7F 136 = 0x88

11 TUG Addr
LSB

Y - 0x69 0 = 0x00 0x00

12 PILOT
Addr MSB

Yaw - 0x21 -64 = 0xC0 0x00

13 PILOT
Addr LSB

Refuel - 0x42 0x00 0x00

14 ACK Mode 3 - 0x55 0x01 0x00

15 Checksum (0xFF-0x75)
= 0x8A

(0xFF-0xB5)
= 0x4A

(0xFF-0x5A)
= 0xA5

